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PREFACE

Research under the contract has been conducted to the subject

of data compression for microwave imagery. A theory of Bit

Compression has been developed for compressing the aperture data

in a microwave antenna array. Two papers have been sent t9 IEEE
for publication. The first paper: "Optimum Data Quantization in

Microwave Imagery and Its Effect Upon Image Quality" is to be
published in IEEE Transactions on Acoustics Speech Signal

Processing of December 1988, and the second paper:"An Exact

Solution of the Analytic Equation of Image Quality from Optimum
Quantization of Microwave Imaging Data" is currently under review.

In this report, the objective of this research is reviewed,

the major procedure of theoretical development is demonstrated and

the important results are discussed.

The mathematical derivation will not be shown in every detail

in the report and could be found in the papers.
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ABSTRACT

In microwave imaging, aperture data are digitized, while

system performance is determined by the quality of the image,

which is usually a Fourier Transform of the aperture data. This

research develops a methodology for finding a quantizer in-the

aperture domain which optimizes an image plane quality criterion.

For amplitude-phase quantization of complex data, a novel

optimality criterion is posed which leads to a new and simpler

optimal quantizer design.

The effectiveness of the theory is evaluated with computer
simulation and on experimental data. The theory explains why

fewer bits are satisfactory in reconstructed image, and it

provides an analytical basis and a rule of thumb for bit

allocation between amplitude and phase.

The theory imposes substantially no constraints upon the

distributions of amplitude and phase In the microwave data. It Is

also shown that the optimum quantization design derived from the

theory is nearly scene-independent and may achieve real-time

performance.

Finally, the theory provides useful guidelines to analyze the

nature of distortion due to data compression.
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1. INTRODUCTION

A high resolution microwave imaging system must process huge

amounts of data. Because of the limitations on processing time,

memory space and the cost of processor hardware, it is important

to develop techniques to reduce the data handling requirement.

The data handling rate denoted by R is the product of the

number of the samples denoted by N (which is the number of antenna

array elements), the bandwidth of the signal denoted by B and the

bit per sample denoted by b (bit is used as the information

carrying unit). Namely,

R = NBb (bit/second)

High cross-range resolution requires large number of elements

and high range resolution requires large bandwidth. Therefore,

for high resolution imaging system, the problem of reducing data

handling requirement is addressed to bit compression which is the

minimization of the number of bits per sample used to represent

the image.

Techniques of this sort are usually referred to a more

general term as data compression(l1. Unfortunately, most existing

data compression techniques are found not to be useful for our

application in microwave imaging because

1) In applying these techniques, both the input and the

output of the compression processor are in the same domain. For

microwave imaging, the data need to be compressed are the aperture

data which are the complex samples of the electric field taken by

the receiving antenna, which is usually a phased array 121. The

image is related to the aperture data by a diffraction integral of

physical optics [3), which is well approximated by a Fourier

transform when the distance from source to antenna is large enough

(4]. In other words, the expected input and output of a

compression processor are in different domains related by an

integral transformation. It is the nature of integral

transformation that any point in the transform domain does not

correspond to a point in the source domain, but to the entire

- -m I I~ II ~ I iiB~1 i



source; As a result, the image quality criteria which govern the

data compression algorithms are no longer valid.

2) The performance of data compression technique is measured

by the capability of compression (e.g. compression ratio which is

the ratio of the number of bits per pixel used for coding the

data-compressed image to the number of bits per pixel used for

coding the original image ). However, from image fidelity point

of view, the higher the compression is, the larger the distortion

is. Therefore, in order to turn these techniques into a useful

application in image processing, one requires not an arbitrary

high compression scheme but the best trade off between the image

fidelity and the degree of compression for given system

constraint. In other words, one needs to know how the image

quality is related to the controlled parameters of the compression

processor, so that for given image quality requirement, one can

determine what minimum number of bits that the data can be

compressed to or, for given number of bits limited by the system,

what quality the constructed image can achieve. Unfortunately,

such theory is found not to be available in most existing

techniques.

3) Even if it is possible to develop these techniques to be

adaptable to the microwave imaging system (meaning that the first

two problems are resolved), their performances are still not

Justified in considering the effect of low correlated source of

microwave image and the additional cost and increasing complexity

of hardware and software in applying these techniques.

The research objective was to develop a theory of Bit

Compression for the high resolution microwave imaging system to

determine the minimum number of bits required of the quantized

signal for the image to achieve any given quality or, conversely,

what quality of image can be obtained for 4ny- given number of bits

that the quantized signal retains. The theory will be developed

by 1) deriving an optimum quantization scheme which maximize the

image quality over. the entire system for given number of quantized

level; 2) deriving a theoretically exact and physically solvable

analytic relation between the number of bits per sample of the

2



quantized signal and the quality measure of image, and 3)
analyzing the effects due to data compression.
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2. THE THEORY

2-1 The System Model

A typical microwave imaging system model is shown in Figure 1

[51.

S(r,-) is a source distribution function which is actually a

complex reflectivity function due to illumination from a distant

microwave transmitter. The electric field e(x) induced in the

aperture is related to S(r,E-) by a diffraction integral. An'angle

9 is measured from the normal to the aperture of the linear array.

By replacing e with u=sin(?), the Integral transformation , for a

far-field source or a near-field source with a well focused

antenna array, is reduced to Fourier transform where u becomes the

canonically conjugate variable to x/ in the Fourier relation 14].

The source distribution S(r,e) can be reduced to one

dimensional function Sk(u) because the range dimension in radar

can be considered as a discrete set af range bins indexed by k

(51.

w(x) is the aperture weighting function. The current

distribution f(x) in the aperture is the product of e(x) and w(x).

With the exception of modern superresolution techniques [6], the

image is generally the magnitude of the Fourier transform of the

current distribution [5], which can be written as I= I F(f) I

where F(-) denotes Fourier transform.

When the data compression is introduced, the compressed

aperture data becomes g=D(fl where D is the compression operator.

The image reconstructed from compressed data then becomes the

magnitude of the Fourier transform of g denoted by Ig= IF(g)I.

The selections of the weighting function w(x) will not change

the nature of image distortion due to data compression because the

reference image Is If in which the effect of w(x) has been

included.

Finally, the problem becomes that for a given Image quality

requirement of Ig,. find a Bit Compression technique to compress f,

such that the number of bits of g can be minimized.

4
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2.2 The Signal Model

The microwave image data can be considered as a random

process. By definition, a random process is an ensemble of time

functions where the time function is random variable for a given

instant of time (71.

The random process model for microwave imaging is illustrated

in Figure 2. For a given time instant which corresponds to one

snap shot, the image data is the spatial sample of the radiation

source for one range bin, therefore the time functions aie the

receiving signals in the aperture and the ensemble is defined to

include all array elements.

The process is assumed to be ergodic because images

corresponding to different snap shot are assumed to be

uncorrelated.

The process is not stationary in general. However, the

statistical study of data distributions shows that if scenes to be

imaged are divided into different groups according to different

categories of objects (e.g. residence, industrial,

airplane,...,etc) then the process can be considered as stationary

within a group provided that their data distributions are close

enough and the parameters of the processor are not sensitive to

variations of the data distributions in the group.

Therefore, it will be assumed that both the stationarity and

the ergodicity are held for the model.

2.3 Basic Definitions

Image Fidelity Measure: Define the normalized zero-lag

correlation coefficient P between the original and the distorted

image as a measure of image quality:

Ifg
= (2.1)I f I

frms Igrms

where Ifdenotes the original image and I denotes the image

obtained from the distorted (i.e.,quantized) input data. Both

6
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Ifand I are functions of the image coordinates. The overbar means
average over all picture elements in the images and rms denotes

root mean square.

In most image processing applications, the mean square error

€ is used to measure the image fidelity Ell. It has been shown

[5) that E and P are equivalent if e is normalized and if the

distorted signal g is scaled such that its energy and the energy

of the original signal f are equal. However, these two major

differences do make the correlation coefficient metric more useful

in our application than the conventional mean square error metric.

Because of the scaling property, the comparison between the proper

image and the distorted image is made under the same energy base,

so that only the unsimilarity will be detected from the

measurement. Because of the normalization property, the

sensitivity of the image quality measure to the variation of data

distribution for different scene will be significantly reduced,

and a bounded relative error scale will usually make more sense

than an unbounded absolute error scale c.

The selection of correlation coefficient metric become

significant in the optimum quantization procedure where it leads

to independent quantizer design while the mean square error metric

lead to dependence between amplitude quantizer and phase

quantizer.

Information Measure: Define entropy H to measure the

information content of the quantized signals;

N
Hz = - Z log pZI (2.2)

i=l

where Z=A representing amplitude, Z= representing phase and pz1iS

the probability that the signal z takes a value in the ith

quantization region .

2.4 Aperture Domaln Formulation

We assume that the source or scene being imaged is in the

far field. P can then be expressed in the aperture domain by

8



using the Fourier transform relationship between the source

distribution and the electric field induced in the aperture, and

Parseval's Theorem equating energies in the two Fourier domains

(5). In the following derivation, f consists of the measured

samples of the electric field in the aperture and g are its values

after quantization. f and g are functions of the aperture

coordinates. If=IF(f)l and I =IF(g)l. F(-) denotes Fourier

Transform and * denotes the complex conjugate.

From (2.1),

IfIg

I f
Ifrms grms

IF(f)I IF(g)l
=

[F(f) ]rml F(g) 'rms

Because

JFI~~ IF(g) I F(f) F~g,)

we write

IF(f)I IF(g)I = K IF(f) F(g)I

where K greater than or equal to 1. Then

F(f) F(g)
[F(f)]rms[F(g)]rm

s

r ms

CIF(f) IF(g)T I

Parseval's theorem implies that

9



* I I

F(f) F(g) f g

EIF(f)? IF(g)? I~"" ElI f f I g

Therefore

f g*
PK I K (0 (2.3)

f rmsgrms

The analysis is performed in polar coordinates. Let f=Ae

and g=A'e . Reference (5] shows phase and amplitude to be

independent when the scene being imaged consists of many sources

and none of the sources dominates all the rest. Assuming this

condition, P. can be expressed as

A A'
rms rms

= PA (2.4)

where

P =A A'/ Arms Arms (2.4a)

P- I exp (J(1-1')) I (2.4b)

where the overbar means ensemble average over all array element

which could be replaced by the expectation value because the

number of array elements is very large.

2.5 Optimum Quantizer

Techniques of optimum quantization usually deal with real

input sequences. Examples are the early papers by Max E8] and

Paez and Glisson-[91. In high resolution microwave imaging, the

aperture data to be quantized are complex random variables. In

this thesis, an optimum quantization scheme for complex data in

10



polar coordinates is introduced . Gallagher (101 also dealt with

optimum quantization of complex data in polar coordinates. There

are two main differences between these two papers and this work.

First, in (81,[91 and (101, only the quantizer was optimized,

whereas in our procedure, the optimization is carried out over the

entire Imaging system (which includes the transform from source

distribution to electric field in the aperture and the inverse

transform from quantizer output to image).

Second, the optimization procedure in (101 leads 'to an

amplitude quantization scheme that is dependent upon the phase

quantization. In our procedure, which maximizes the image

correlation coefficient P (2.1), the amplitude and phase ouantizer

are independent . This is significant because 1) it gives the

complete freedom to achieve the most efficent bit allocation

between amplitude quantizer and phase quantizer; 2) it makes it

possible to express the total entropy of the quantized signal with

the individual entropy measurement from the two quantizers' output

without involving conditional entropy (7] which is usually

difficult to evaluate; and 3) it leads to a similar optimum

conditions both for amplitude quantizer and phase quantizer as

those developed for real signal by Max, so that one is able to use

all resources and facilities developed for Max quantizer, such as

Bruce's algorithm 111 and Sharma's algorithm [12], to calculate

the optimum settings.

The conditions of optimum quantization will be obtained by

maximizing the image correlation coefficient P.

It can be found later that the conditions which maximize Pc,

also maximize K. Therefore, the image correlation coefficient P

will be maximized as the lower bound correlation coefficient PO is

maximized.

Because P,: = PA P;. , and because 'A and P, are independent,

P is maximized as each of PA and P1 is maximized individually.

2.5.1 Optimum Amplitude Quantizer

Let NA  be the number of quantized levels, a! be the ith

output level of the quantizer, the value assigned to a sample

11



falling In the interval C a1 1 ,a1 ), and a I be the endpoint of
input range of the quantizer with i=l,2 ,...,NA(z replaced by a in

Figure 3).

Define a-a E( A a- , A < a,) with E(-) representing
expectation value, PA= Pr( a,_1 < A < a1 ) with Pr(-) standing
for probability,

The terms In (2.4a) may be calculated:

A A' Z Pr(al-i < A <a1 ) E( AA'IaI1  < A<a,)

NA
= A PAlal E( Al al1 < A < ai)

I

and

AE(A I 1 1 A < ai )Arms= PA

N A 1/

The amplitude correlation coefficient is

N

1Alall (2.5)'A =  N -*1/2

EApAial .  A
I I rms

It can be shown that P is maximized if a' and a satisfyA I I tiy

a'= a i=l, 2 ,...,NA (2.6a)AA

a= 1=1,2,... NA-I (2.6b)
2

12
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2.5.2 Optimum Phase Quantizer

Let N, be the number of quantized levels, + be the output

level of the quantizer, the value assigned to a sample falling

within the interval (+-11+,i), and + be the endpoint of the

input range of the quantizer with i=l,2,...,N-l(z replaced by .

in Figure 3).

Define ,i E( ' < , ) E(-) representing

expectation value, and pg Pr( +i-1 < M < ) with Pr(-)

standing for probability.

The phase correlation coefficient (2.4b) becomes

P = I exp[j(§.- ')
N §

IL PiE{ exp[J(I-§')]Il l < +,)I

It can be shown, for uniformly distributed phase, that P. is

maximized If and 4' satisfy:

= i=l,2,...,N - (2.6c)

2=,, ., (2.6d)

Equations (2.6a)-(2.6d) are the design equations of the

optimum quantizer. From (2.6), it is clear that the dependence

between the amplitude quantizer and the phase quantizer in

Gallagher's design vanishes. The equations (2.6a)-(2.6d) say that

in the optimum design of the two quantizers, the ith output level

equals the conditional mean of the input data in the ith range and

the endpoint of the ith range equals the arithmetic mean of two

adjacent output levels. These statements are true for arbitrary

amplitude distribution, for uniform phase distribution and for

amplitude and phase being independent.

14



2.6 The Transfer index

From (2.1), one can see that P. has the same form as P except

that it is defined as the magnitude of complex quantity.

Therefore we can consider K as a transfer index which transfers

the image correlation coefficient from the aperture domain into

the image domain. The expression for K can be derived in the

following procedure.

From (2.1),

f g 9 F(f)j IF(g)I

I frsI gr F(f) I rs[ F(g)I m

But from (2.3)

fO g * p(f) F*(g)

f rmgr (F(f)I rms F(g)I rm

= C IfF(f)Iexp(i+ f)IF(g)Iexp(-ji, 9
where

C = {fF(f) I rm F(g) I mi

Independence between phase and amplitude in the image domain (51

Implies that

11=C IF(f)I IF(g)j texp(i(.t'f -t)d

- exp(iUf--*'g)dI P

which,by definition, gives

X = exo(J(*.-4 )

15



Let Ai denotes the measured amplitude in the ith element, le

denotes the measured phase in the ith element, and "

represents values after distortion. After much mathematics, it is

found that

K= explJc )

where

= tan-Is

and

(Z AisinY i)CZ A'cos' -COS' )(L Alsin''

(Z AlCOSY i)(E Ajcos'WP)+(Z Alsin'4i) (E A'sin'411I)

(2.7)

where 'I= Ii - i with -vIbeing the Fourier kernel, and the

summation is taken over all elements (i from 1 to N).

By defining V = N Z Vi, 0 can be expressed as

I

A sin) A'cos')-( A cos' )( A'sin')
=__(2.8)
A cosT' )( A'cosY')+( A sinY )( A'sin' ")

Because the number of elements is very large, V can be

approximated by the expectation value of X . This implies that

the transfer index K is uniquely specified for given distribution

of aperture data and the quantizer parameters as the number of

elements goes to very large.

This property shows that the exact solution of image

correlation coefficient exist if the distribution of aperture data

are given. It also allow us to obtain K by using computer-

simulated images through the relation K='/P o with P obtained from

(2.1) and PO obtained from (2.4). This method is more accurate

than calculating (2.7) because of the tremendously reducing number

of mathematical procedures that are involved; the result is

smaller accumulation of errors in the calculation.

16



In section 2.5, it was shown that Pois maximized when the

optimum quantization conditions are applied. A numerical study of

(2.7) shows the same result for K, namely that K is maximized when

the optimum quantization conditions are applied. Furthermore it

was found that K is insensitive to changes in the output levels

provided that the maximum deviation from the optimum set is less

than 10 per cent.

Some values of the estimate of K are listed in Table 1.

A numerical study of K based on (2.7), and the results of

experimental testing discloses the following additional important

properties of K:

1) Using the estimates of K into the evaluation of image

correlation coefficient with experimental data (Tables 5 and 6)

infers that K is insensitive to variations in the distribution of

the complex aperture data. This property is very important in a

practical sense because it indicates that K is relatively scene

free.

2) The transfer index K is more sensitive to phase distortion

than to amplitude distortion. As Table 1 shows, K is closer to 1

for amplitude-distortion-only than for phase distortion.

3) The same table shows that when the phase distortion is

significant (e.g., 1-2 bits of phase), K is determined almost

entirely by the phase quantizer.

4) When the phase distortion is insignificant (e.g., 3 or

more bits of phase), K is determined almost entirely by the

amplitude quantizer.

2.7 The Analytic Equations

By applying the optimum condition (2.6) to (2.4) and

summarizing the results from previous sections we obtain the

analytic equations of image correlation:

P = K

PO = P AP1

17



H~ (bits)

1 2 .3

R1 R2

H A S 0 0.70 0.90 0.91 0.95 1

(bits) 1 0.70 0.90 0.95 0.97 1 K

2 0.70 0.90 0.97 0.99 1

Table I. es3timate of K * The range3. R1 and R2 defined by

<0,< < 0 < 0 -

RJ:(0.6 p A 0.9) and R2:(0.9 - PA 1-0) where PA A/Arms



PA =arms(ai)/Arms (2.9a)

NA^ NA ^2I/

where arms C P jai 3
i=1-

P= sinc(TT 2 (2.9b)

Nz

Hz(zi) = - Z pZi(zi) log pZi(zi)
i

where Z=A representing amplitude and Z=e representing phase.

The independence between the amplitude quantizer and phase

quantizer implies

H = H A + H

K is determined by

K =;xp(Ja-)

where

cc. = tan- 0

and

A sin' )( A'cos'")-( A cos' )( A'sin''"

A cos' )( A'cosV )+( A sin' )( A'sint'

For given system constraints, this set of equations relates

the optimum image quality to the minimum number of bits per sample

of the quantized signal through the optimum endpoints setting {zi}

and optimum output levels (zi)

Table 2 lists some results of exact image correlation

coefficient P versus the number of bits per sample in amplitude

and phase for Rayleigh distributed amplitude and uniformly

distributed phase which shows that the image quality is well
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H, (bits)

1 2 3

H A 0 0.806 0.886 0.94~9

(bits) I1 0.873 0.961 0.985 P-KP*

2 0.896 0.986 0.990

Table 2. Image Correlation Coefficient vs. the number of

Bits Per Sample. Amplitude and Phase
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preserved for high compressed aperture data (for example, from the

first column first row of Table 2, one can see that more than 80%

of the image fidelity is achieved for only 1 bit of aperture

data).

As one can observe that both the analytic equations of image

quality and the optimum conditions have no closed-form solution.

They can only be solved numerically by using large computer

program. However, in order to study the properties of the theory,

it is not always necessary to carry out the general and'exact

solutions. Good approximation and simulation using typical

distribution are usually more desirable.

2.8 Suboptimum Conditions

It is well known that phase carries more information useful

for image construction than amplitude. Therefore, a suboptimum

amplitude quantization schemes could yield near-optimum results

provided the phase is optimally quantized.

If one replaces the condition of (2.6b) with the condition of

setting all PAi to be equal:

-HA

PA= p = 2 A for all i (2.10)

then the quantization procedure can be reduced to one dimensional

and PA can then be expressed explicitly as the function of HA

HA

HA 2 A

A = [ 2 ZCi(HA) ] (2.11)
i=l

where

I a/ Arms

Because C is only a function of HA P 'A is uniquely specified

by HA.
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It is found by computer calculation of (2.9a) and (2.10) that

PA( 2 .9 a) is almost identical to PA(2.10) in the sense that the

largest error between them, which appears when NA=2, is less than

0.2%. However, equation (2.10) greatly simplifies the analysis

procedure.

2.9 Simulation

Assuming that the scene to be imaged is in the far field and

consist of many sources (targets) characterized by a' real

amplitude Ai and phase Ai , the electric field induced in the

antenna array is e(x) = Z A i exp( Jkxu i + 0i 
). Further assuming

that none of the sources dominates the sum of all the rest which

suggests that all these sources are independently identically

distributed. By the Central Limit Theorem, the quadrature

components of the electric field are independent Gaussian

processes which implies that the amplitude and the phase of the

current distribution f are independent with Rayleigh distributed

amplitude and uniform distributed phase. By using this multiple

targets model (51 and applying the suboptimum condition (2.10), a

closed form solution of lower bound image correlation coefficient

Poin terms of the entropy of quantized signal can be obtained.

To see this, recall equation (2.11)
-H Ai ^

P( 2 ZC )
where

A A

i=a/A rm s

with

PAi= p =2 for all i.

By Noting that the pdf of amplitude is Rayleigh, that is

PA(a) =(a/,T7)exp(-(a /2a2))

Evaluating the terms in (2.11) gives

Arm= ( a'PA(a) da = v2 0 (2.12)

where a is the standard deviation of amplitude.
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a1 = E(alAa Sa < a ) S Pja) da

p- (-aexp-a/2C )+a 1 1exp(-aia-/2a'

+ V21 Cr [Erf(ai/a)-Erf(a ii/r)V }  (2.13)

where Erf(x) is the error function of x defined by

x

Erf(x)=(v2rr 1'-- S exp(-y2/2) dy

After much mathematics, aiis found to be:

ai=[2 in[ (1-ip) ]}t/i i=0,1,...,NA-1 (2.14)
and

a N;

Nov let

C I =a [(r/2) (2.15)

and note that

-HA --

p =2 NA

then

Ci 12 1n[(l-i2 -A ]/T)/ Ii=0,1,...,NA-1 (2.16)

Substitute (2.15) into (2.13) and then substitute the modified

(2.13) and (2.12) into CI in (2.11). The result is

H 
-. 

5C A-AT { 0.5 C C exp(-TC /4)-CIexp(- rc1 /4)]

+[ Erf(CI(TY/2) I/) - Erf(Ci-l(Y/2) 1 )1
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(2.17)

where i=l,2 ,...,NA-1 , and Ciis determined by (2.16).

A summary of results follows:

PO. PAP

H H HA+ H

A HA

-H 2 HA 1/2
P = C 2 A Z Cj(H A ) I
A A=

where
C { 0.5 [ Ciexp(-TTC i/4)-Ciexp(-nCj /4)1

+[ Erf(Ci(rr/2)l/ - Erf(C 1 1 (/2) /)]}

C 2 ( lnt(l-i2 A 1 / 3/

PA can be approximately given by

0"95+17)

PA= 1-exp[-(1.056H A  +2.173))

Lastly
-H,

P= sinc(Tr 2 1 )

Results from carrying out these equations are shown in Table

3, Table 4, Figure 4 and Figure 5. Table 3 lists P. for various

combinations of HA and H .. Table 4 relates the correlation

coefficient PI to a subjective assessment of image quality 151.

Figure 4 plots PAand PI against the number of amplitude and phase

bits per sample and Figure 5 plots Po0 where the dashed lines are

for constant sums of H A and H.

An Important observation drawn from the analytic equations

((2.1l)-(2.17)) of lower bound correlation coefficient P 0 is that

P 0  is independent' with the statistical properties (mean or

variance) of the image data and uniquely related to the entropies
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p.H (0 1 2 3 4 5 6 7

H A __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

0 0.0000 0.5641 0.7978 0.8636 0.8805 0.8848 0.8858 0.8861

1 0.0000 0.6114 0.8646 0.9359 0.9542 0.9588 0.9600 0.9603

2 0.0000 0.6272 0.8870 0.96501 0.9789 0.9836 0.9848 0.9851

3 0.0000 0.6330 0.8952 0.9689 0.9879 0.9927 0.9939 0.9942

4 0.0000 0.6352 0.8983 0.9723 0.9913 0.9961 0.9973 0.9976

5 0.0000 0.63650 0.8995 0.9736 0.9926 0.9975 0.9987 0.9990

Table 3. Po Vs number of bits per sample: amplitude and phase
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0. Image

0.6 often recognizable

0.8 often alcceptable

C.9 good quality

0.99 high fidelity

Table 4. Experimental relation of correlation to Image quality
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of the quantized signals. This conclusion can also be considered

as correct for the exact image correlation coefficient P because

the transfer index K, when the number of phase bits is small, is

asymptotically independent with amplitude which is the one being

the function of mean and variance.

It is shown that the phase carrying more information useful

for image construction than amplitude. This can be seen in Figure

4 which shows that P§ dominates the value of Po.

It is also shown that hard-limiting the input signals to a

phased array while leaving the phase unaltered preserves much of

the image integrity. This agrees with work by Kermish (151, Van

Hove E161 (171, Oppenheim (181, and Steinberg (51. The result is

seen in Figure 5 on the upper portion of the Haxis (HA=O): the

correlation coefficient P. in this region is nearly 0.9 indicating

(Table 4) good image quality. Amplitude-only information,on the

other hand, destroys the image. Hard limiting plus one bit of

phase information sometimes suffices (Pa= 0.6). Hard limiting

plus two bits of signal phase per sample results in a correlation

coefficient of 0.8, w'ch often results in acceptable imagery.

Figure 5 shows that a minimum of four bits of information per

complex signal sample guarantees a relatively good image ( 0.9)

provided that three bits are used for the phase and one bit for

the amplitude. Eight bits are required to ensure a high fidelity

image ( t0.99).

Table 3 and Figure 5 provide a quantitative rule of thumb for

assigning data bits to phase and amplitude: When the number of

bits per data sample, HA+ H, is no more than 8, the number of

bits assigned to phase should be two larger than the number of

bits assigned to amplitude. When HA+ H 1 . 10, HA= H1is the optimum

assignment. These rules also show that the phase information

thoroughly dominates the process which is again agree with the

well known experimental results in coherent imaging (e.g.

holography or microwave imaging).
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3. EXPERIMENTS

We have conducted 6 experiments to test the theory. The

experimental data are obtained from near-field two-dimensional

high-resolution radio camera images having 3m of range resolution

and 2-6m cross-range resolution (2). The wavelength is 3cm. The

experiment numbers and the target descriptions are as follows:

301 Limerick Nuclear Power Plant

303 Cromby Power Plant

308 Marshall Street, Residential Houses

309 High Street, Residential Houses

310 Potato-Chip Factory

312 Suburban Housing Development

The targets are all in Phoenixville,PA, at distances of 4.5

to 17 km from the radio camera, which is located at the Valley

Forge Research Center of the University of Pennsylvania. The

image correlation coefficient obtained from the experimental data

is denoted by P x which is obtained by evaluation of (2.1) using

images produced by experimental data with optimum quantization

applied.

The value predicted by the theory is P=KP o where P0 obtained

by (2.9a) and (2.9b) using measured data in the aperture and K is

obtained from Table 1.

3.1 Phase Distortion Only Experiments

In this case P=KP -Z because PA=1 . P Z was directly calculated

from (2.9b). The comparison between P and P for the sixx
experiments are shown in Table 5. The seventh row shows the

average of the measured correlation coefficients of the

experimental data. In the eighth row are the predicted values.

From Table 5 one can observe that the theoretical value is

very close to the average experimental value. This is a highly

practical result because the theoretical correlation (2.9b) was

derived under the assumption of uniformly distributed phase. In
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run 1 bit of phase 2 bits of phase Remarks

301 0.89 0.98

303 0.92 9I 0.

308 0.91 0.98 Experimental

0 309 0.90 0.98 correlations

310 0.92 0.98

312 0.93 I0.98

ix0.91 1 0.98 Ave. exp.correl.

P-~:P0.91 I0.99 Theoretical value

I i

rabl 5 bit Co ae 2it p. t oPhase Resmarks )il
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actuality, the real phase distributions, obtained by study of the

phase histograms, are not quite uniform and are distinguishably

different from scene to scene. This means that P is insensitive

to variations in the distribution of phase.

The value of P for the 'no phase' case turns out to be

indeterminate because (2.8), from which K is determined, become

indeterminate. It was shown experimentally in E5] that no-phase

data produce a meaningless image (Figure 6). It is for this

reason that this case is ignored in Table 5.

3.2 Amplitude Distortion Only Experiments

In this case P=KPA because P =l. The theoretical values are

given in the left column of each group of data in Table 6. K was

obtained from Table 1. PAwas calculated from (3.3) in which

A rmsand the a were estimated from the individual data sets.

The second column is Px"

The third column is Px which is obtained from images
x

produced with the optimum quantizer design based on the assumption

that each distribution was Rayleigh.

Four observations can be drawn form Table 6:

1) The values of P predicted by the theory are very close to

P obtained from the images.x

2) Unlike what was observed in the phase-distortion-only

experiment, the image correlations are remarkable different from

scene to scene specially when the number of amplitude bits is

small ( e.g., for hardlimiting, Poi:i=0 .6 9 while P28 =0.89, and all

of them are significantly smaller than the image correlation

obtained from Rayleigh distributed amplitude data, which is

P=0.94). One can also see that image correlation coefficients are

similar when their amplitude histograms are similar. (e.g.,data

sets of runs 309 and 310 and of 308 and 312.) If we define the

image point occupancy to indicate the "mass" of the image:

I1 = If / Ifrms (3.1)
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HA(bits)

I I

0 I I I 2II

run P-K 0 X P-KpP~ P X I iP-K0 P' P
r "A Px p ;pK A Dx  p z A px x

301 0.70 0.70 0.691 0.80 0.81 0.84 0.88 0.90 0.89I I
303 0.79 0.77 0.77 0.92 0.91 0.92 0.97 0.97 0.96

308 0.88 0.89 0.891 0.95 0.95 0.95 0.96 0.97 0.97I I
309 0.78 0.79 0.79 I 0.89 0.89 0.91 1 0.93 0.95 0.95

310 0.80 0.81 0.81 0.92 0.90 0.91 0.95 0.95 0.94I I
312 0.85 0.86 0.86 I 0.93 0.94 0.94 0.96 0.97 0.96

Rayleigh 0.95 0.94 0.94 0.99 0.98 0.98 0.99 0.99 0.99
II

Table 6. px Compared with p. Amplitude Distortion Only. p Is the

image correlation predicted by the theory. p and PI are the measured

correlations when the quantizer design was optimized for each measured

aperture distribution, and for the Rayleigh distribution, respectively.

The values in the bottom row are based on simulation data having a

Rayleigh distribution.
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which is the normalized mean value of image, or more imaginally

the image correlation between the image and a homogeneous black
image (hardlimiting image). The results of P versus Io are

tabulated in Table 7. From Table 7, one can see that P increases

toward the theoretical value as I increases.0

3) It is evident that the estimates of K from Table 1 which
are used to evaluate P in Table 6 work quite well for all scenes

although all of them have different amplitude distributions. This

means that K is nearly a scene-free parameter.

4) A very important observation from the comparison of Px and

P' is that the quantizer design based on the Rayleigh distribution

gives nearly identical performance , in almost all cases, to the

designs using the six actual distributions. This implies that one

quantizer design is appropriate for all scenes.
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run # aA(Haidlimiting) 10

301 0.70 0.37

303 0.77 0.42

309 0.79 0.412

310 0.81 0.50

312 0.86 0.55

308 0.89 0.58

Table 7. P vs IMage POint3 OCCUpacy
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4. DISCUSSION AND CONCLUSION

4.1 Practical Considerations

Observations drawn from the experimental testing of the

theory can be summarized into the following categories with

practical considerations, and two major aspects of the theory,

which are the optimum quantizer design and the estimate of image

correlation coefficient, will be examined.

l)Sensitivity: The qualitative analysis and numerical study

shows that the transfer index K is insensitive to the amplitude

distribution and to the variation in phase distribution, while

Table 6 shows that P. is relatively sensitive to the changes of

amplitude distribution. The optimum quantizer design is found not

sensitive to the data distributions.

2)Generality: The theory was developed under the assumption

of a uniform distribution of phase in the aperture data; no

restriction was imposed upon the amplitude distribution. However,

since the variation from uniform distribution that the phase

distributions of actual data have is considered as small and both

optimum quantization conditions and estimate of P are insensitive

to the phase variations. The theory is practically general.

3)Scene Independence: The insensitivity of data

distributions implies nearly scene-free performance of the optimum

guantizer. The estimate of P is not a scene-free quantity in

general. However, if we classify scenes into different groups

according to the nature of the scene ( e.g. industrial, residence,

field or airplane, etc) or the image points occupancy of the

scene, then, within a group, the amplitude signal can be

considered as stationary and the scene dependence of P can be

eliminated. Under this condition, the theory can be consider as

scene-free.

4) Capability of real-time processing: In many image

processing situations, real-time processing is preferred. The

optimum design requires knowledge of the statistical properties of

the input data which, in principle, requires that data be acquired
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and analysed. Such a process precludes real-time operation.

However, the nearly scene-free performance observed in this study

allows the designer to avoid the distribution-estimation steps

and to base the design upon assumptions of uniform phase and

Rayleigh amplitude distributions. By making these priori

assumptions regarding the data, the quantizing operation becomes

real-time.

4.2 Distortion Analysis

Knowledge about distortion so far is limited to knowing how

much percent of the energy belongs to distortion. It is not

sufficient. In order to determine the tolerance to distortion in

the image, one has to know how the error energy is distributed.

In other words, is it randomly and homogeneously distributed over

all place? or does it build up coherently? If false targets are

created, how do they relate to the data compression procedure and

to the original image, etc..

Some earlier research on the nature of Image distortion from

hardlimiting aperture data have shown that the hardlimiting

procedure does produce false targets (ghosts) (4], [131-[141. It

is also found that the distorted image is related to the original

image by some kinds of convolution relationship (41 [15].

A complete solution to this problem is out of the scope of

this work. However, a procedure is developed here to give some

useful guidelines to approach the solution.

By assuming that
Jtl

f = Aej  A I e I(x - x) (4.1)
ii I

g = A'e ' Z Ale .Z(x - xi) (4.2)ii

and letting

KAi= Aj/Ai , and K i = Fl /i

we have

g 4,1e Lx -x 1 )
i
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= Z KA e J 45(x- x1 )

K ieJ(K l 1)§iAieJ2i6X x1

CKALeJ(K l 1)§i 1(x _ xi)
= (S K~te 1 ~ -x))

i

CZ Ake JkS(x - x )
k

CZ( (Ail /A 0 e 6( -

CE Ak e -rk V x k) 3
k

j(W- J§
((A' /A) e ]HA e 3

= Hd f

therefore

Iw= hd * If (4.3)
vhere

1 9 F(g), hd= F(Hd ) and r F(f)

Ig= '1 g, 1f= 1Ifl

One can see that the distortion process has the same form as

a linear filtering process with filter transfer function

j( '- )

Hd = (A'/A) e (4.4)

except that the parameters of Hd are discrete random variables.

Let the comple'x image
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if= Fi d(u-u )

where u1  = sin($1 ) represents the ith pixel location in a given
range bin and F[ represent the complex pixel value at that

position . Then the complex distorted image I can be expressed
g

as

Ig If* h d

= [ Z F i d(u-u1 ) ]*h

= Z F i hd(U-Ui)

which shows that the distortion operation is equivalent to the

procedure that first shifts hd to every pixel location multiplied

by the pixel value at that position, and then adds them together

over the entire image field.

From here, one can immediately observe that

1) the distortion energy will be spread all over the image

plane;

2) the nature of the ghosts depends very much on the tail

structure of hd.

Therefore, as a guideline of distribution analysis, the shade

of hd will be investigated for various case of data compression.

4.2.1 Effect of Amplitude Distortion

For amplitude distortion only, we have

Hd = A'/A (4.5)

For the case of no distortion, Hd= 1. The "filter" is indeed

an all-pass filter.

As the number of quantized level decrease, the fluctuation

range of Hd ,in which 99 per cent of the data points of Hd are

40



located, and the fluctuation rate (rate of changes in amplitude
from two adjacent elements) increase, so that more tail structures

are added to hd in the image domain according to the property of

Fourier transform (Figure 7). The probability of getting false

targets is therefore increased. In the case of hardlimiting (0

bit of amplitude), the fluctuation range reach its maximum.

Because the large part of tail structure of hd is in small

magnitude, and because any pixel value which is lower than certain

threshold (usually -20dB) will be considered as background 'noise,

the major effect of amplitude distortion is to increase the noise

level as well as to decrease the dynamic range.

4.2.2 Effect of Phase Distortion

For phase distortion only, we have

Hd= exp(' -)

= exp(,a) (4.6)

_1N
hd(u) = N Z exp[-J(6*i+ Yi(u))

i

N
N 1 exp[-Jl'i(u))] (4.7)

i
where --eis the Fourier Kernel.

Equation (4.7) can be considered as a summation of unit

vectors with angle ' .

Let us first consider two extreme cases:

For the case of no distortion, Hd=l, hd becomes a 5 function

as expected.

For the case of no-phase distortion (1'=0, . 41= )i),

_1N
hd(U)= N Z expt-j(* i+ "Yi(u)) = 0

i
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Figure 7 . Illustration of Analysis of

hd for Amplitude Distortion
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as N goes to infinity, all vectors are canceled out Include

broadside because *is so as T Is are uniformly distributed over 0

to 2Tr for all u. It follows that Ig=hd *If=0 and II =1 1=0, which

lead to an undetermined value of P. For N being finite, this

summation might not be zero. However, as shown in Figure 6, it

does result in a meaningless image.

When more distortion is introduced (the number of bits

decreases), the fluctuation range and the fluctuation rate of.the

projections of the unit vectors Hdi on both the real axis and

imaginary axis increases (Figure 8). As the same consequence as

for amplitude distortion, more tail structure are added onto hd.

Therefore, the major effect due to phase distortion is basically

the same as in the case of amplitude distortion.

The above analysis provide us a roughly picture about how the

distorted energy will distributed and give guideline for further

study on the subject. Although the distorted image I is defined
g

as the magnitude of I and hd is a complex quantity, the analysis

on the structure of Ihdl will still be very valuable to the

analysis of false targets distribution because

II = II

I Z Fi hd(U-Ui ) I

which means that the result from the analysis on IhdI gives the

information upon the upper bound of the false targets

distribution. In other words, the actual result will never be

worse than the result from the analysis.

4.3 Conclusions

Summarizing results obtained from the previous sections, we

conclude:

1) Image quality is measured by image correlation coefficient

P defined by (2.1). It can be expressed in the aperture domain as
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the product of the lover bound correlation coefficient P 0 and the

transfer index K.

PO can be further decomposed into two independent factor: PA

the amplitude correlation coefficient, and P,, the phase-dependent

correlation factor. For optimum quantization, the amplitude

correlation coefficient PA is equal to the rms value of the

quantizer output level a' normalized to the rms value of the input

data, with the input ranges chosen such that the optimum

conditions of (2.6a) and (2.6b) are met. For the case 'of the

phase being uniformly distributed, the phase-dependent correlation

factor P is the sinc function of TT / N where N is the number of

output levels. For Rayleigh distributed amplitude and uniform

distributed phase, PO is independent with the statistical

properties (mean or variance) of the image data and uniquely

related to the entropies of the quantized signals.

The transfer index K is completely specified when the

distributions of the aperture data and the quantizer parameters

are given. Given number of quantized levels, K is insensitive to

the changes in the setting of output levels. It has also shown

that K is asymptotically independent with amplitude distribution

and insensitive to the variations of the phase distribution.

Therefore, K is nearly a scene-free parameter.

2) The optimum quantization scheme, which maximizes Pofor a

given number of output levels, consists of two independent

quantizers, an amplitude quantizer and a phase quantizer. For

each quantizer, the output level from each quantizer-established-

range is equal to the conditional mean of the input over that

range. The value of the dividing point (endpoint) between any two

quantizer-established-ranges is equal to the arithmetic mean of

the conditional means of the two adjacent ranges. These are the

two conditions for optimum quantization {(2.6a)-(2.6d)}. This

optimum scheme is good for an arbitrary amplitude distribution and

for a uniform phase distribution.

3) The theory of Bit Compression for microwave imaging is

developed by presenting an exact solution of the analytic equation

of image correlation coefficient in terms of the entropy of the
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quantized aperture data through the optimum quantization

procedure. For a given distribution of complex aperture data, the

theory determines the minimum number of bits required of the

quantized signal for the image to achieve any given quality or,

conversely, what quality of image can be obtained for any given

number of bits that the quantized signal retains. It proves that

the phase information thoroughly dominates the process. It is

shown that hard limiting the input to a phased array while leaving

the phase unaltered preserves much of the image integrity.

Amplitude-only information destroys it. Hard limiting plus one

bit of phase information sometimes suffices. Hard limiting plus

two bits of signal phase per sample often results in acceptable

imagery. A minimum of 4 bits of information per complex signal

sample guarantees a relatively good image provided that 3 bits are

used to represent the phase and 1 bit is used to represent the

amplitude. Eight bits are required to ensure a high fidelity

image.

4) The theory provides a rule of thumb for optimum bit

allocation between amplitude quantizer and phase quantizer. It

indicates that when the number of bits per data sample is no more

than 8, the number of bits assigned to phase should be two larger

than the number of bits assigned to amplitude. For finer

quantization, equal numbers of bits should be assigned to

amplitude and phase.

5) The theory imposes substantially no constraints upon the

distributions of amplitude and phase in the microwave data. It is

also shown that the optimum quantization design derived from the

theory is nearly scene-independent and may achieve real-time

performance.

6)Finally, the theory provides guidelines to explore the

nature of distortion due to data compression. It is shown that

the distorted energy is spread all over the image plane. Its

major effect is to increase the noise level so that the dynamic

range will be decreased.
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